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A lattice field theory approach to the statistical mechanics of charged polymers in electrolyte solutions �S.
Tsonchev, R. D. Coalson, and A. Duncan, Phys. Rev. E 60, 4257 �1999�� is applied to the study of a polymer
chain contained in a spherical cavity but able to diffuse into a surrounding gel. The distribution of the polymer
chain between the cavity and the gel is described by its partition coefficient, which is computed as a function
of the number of monomers in the chain, the monomer charge, and the ion concentrations in the solution.
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I. INTRODUCTION

The problem of partitioning of a polymer chain confined
to move within large cavities embedded into a hydrogel has
received attention with some interesting experiments per-
formed by Liu et al. �1�. These authors investigated the so-
called “entropic trapping” phenomenon, which describes the
preferential localization of a polymer chain within large cavi-
ties embedded in a hydrogel due to the larger conformational
entropy of the chain in them. Therefore, this phenomenon
has been suggested as a basis for potential new methods of
polymer separation. In this context, the problem is also rel-
evant and can lead to better understanding and possible im-
provement of many existing separation methods, such as
membrane separation, filtration, gel electrophoresis, size ex-
clusion chromatography, etc. �2�, all of which utilize the de-
pendence of macromolecular mobility through a network of
random obstacles on molecular properties, such as molecular
weight, monomer charge, electrolyte composition, etc. The
practical importance of these techniques has motivated a
number of investigations of polymer separation between
cavities of different size �3–7�.

In our earlier work �6,7� we used lattice field theory cal-
culations to study polymer separation between two spheres
of different size—a simplified model of the more compli-
cated system of the polymer moving between large cavities
embedded in a hydrogel, with the larger sphere playing the
role of the cavities and the small sphere corresponding to the
connecting channels in the gel. We investigated the depen-
dence of the partition coefficient K, defined as the ratio of the
average number of monomers in the two respective spheres,
as a function of the total number of monomers in the chain,
the excluded volume interaction between them, the monomer
charge, and the concentration of electrolytes in the solution.
Our results were qualitatively in accord with the experiments
of Liu et al. �1� and with related computer simulations �8�.

Recently, several field-theoretic approaches for treatment
of charged polyelectrolyte systems have been proposed. For
example, Wang et al. presented a self-consistent field theory
based on the mean field approximation �9�. Then, a promis-
ing field-theoretic methodology valid beyond the mean field
approximation, based on the so-called “tadpole renormaliza-
tion procedure” was developed by Baeurle et al. �10�. This

method was first successfully applied to prototypical poly-
electrolyte models, and lately on solutions of polyelectrolyte
chains �11� where the “tadpole renormalization” concept was
combined with the Hartree renormalization procedure.

In this work we apply the lattice field theory approach to
the more complex system of a polymer chain moving within
a large spherical cavity embedded in a network of random
obstacles.

In Sec. II of the paper, for continuity of the presentation,
we review the lattice field theory of charged polymer chains
in electrolyte solution �7�. In Sec. III we describe the Lanc-
zos approach for finding the energy spectrum of the
Schrödinger Hamiltonian problem �arising from the polymer
part of the partition function �7��, and the resolvent approach
for extracting the corresponding eigenvectors. Section IV de-
scribes the numerical procedure for solving the mean field
equations of the system, and in Sec. V we present and dis-
cuss our results. In Sec. VI we conclude our presentation.

II. REVIEW OF LATTICE FIELD THEORY OF CHARGED
POLYMER CHAINS IN ELECTROLYTE SOLUTION

In Ref. �12� we derived the following functional integral
expression for the full partition function of a charged poly-
mer in an electrolyte solution with short-range monomer re-
pulsion interactions

Z =�D��r��D��r��e��/8�����dr�−�/2���r��2dr�+c+�eie��dr�+c−�e−ie��dr�

	ZSchr��,�� . �1�

Here, �=1/kT is the inverse temperature, � is the dielectric
constant of the solution, e is the proton charge, � is a mea-
sure of the strength of the excluded volume interaction, �
and � are auxiliary fields, c±=e�
± /�±

3 with 
± and �± being
the chemical potentials and the thermal deBroglie wave-
lengths for the ions, respectively. The polymer part
ZSchr�� ,�� in Eq. �1� refers to a Euclidean-time �T=M=total
number of monomers� amplitude for an equivalent Schröd-
inger problem based on the Hamiltonian
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H � −
ap

2

6
�� 2 + ��c�r�� + �pe�c�r�� , �2�

where ap is the Kuhn length and p is the charge per mono-
mer. The mean-field equations corresponding to the purely
real saddle-point configuration fields �c= i�, �c= i� are ob-
tained by setting the variational derivative of the exponent in
the full functional integral �1� to zero. For the case of a
polymer with free ends �the only situation considered in this
paper�, the polymer amplitude ZSchr can be written in terms
of sums over eigenstates of H as follows �7�:

ZSchr =� dxidxf�
n

�n�xi��n�xf�e−MEn = �
n

An
2e−MEn � eFpol,

�3�

where En is the nth energy eigenvalue,

An �� dr��n�r�� , �4�

and

Fpol = ln	�
n

An
2e−MEn
 �5�

is the negative of the polymer contribution to the free energy.
Thus, the mean-field result for the negative of the total free
energy is

F =� dr����

8�
��� �c�2 +

�

2
�c

2 + c+e�e�c + c−e−�e�c
+ Fpol��c,�c� . �6�

Varying the functional �6� with respect to the fields �c, �c
one obtains the mean-field equations

�

4�e
�� 2�c�r�� = c+e�e�c�r�� − c−e−�e�c�r�� − p��r�� , �7�

ap
2

6
�� 2�n�r�� = ���r���n�r�� + �pe�c�r���n�r��

− �En − Vm�r����n�r�� , �8�

where �, defined as

��r�� � −

�
n,m

An�nAm�m

En − Em
�e−MEn − e−MEm�

�
n

An
2e−MEn

, �9�

is the total monomer density. The equations presented here
apply for polymer chains of arbitrary length, provided all �or
a sufficient number� of the states are included in the sums
above. The single-particle potential Vm�r�� has been included
to enforce an exclusion region for the monomers �12�. Note
that the parameters c± are exponentials of the chemical po-
tentials 
± for positively and negatively charged ions. The
numbers of these ions must be fixed by suitably adjusting c±
to satisfy the relations

n± = c±
� ln�Z�

�c±
= c±� e±�e�cdr� . �10�

The advantage of working with F is that, as shown in Ref.
�7�, it has a unique minimum, and thus, can be used to guide
a numerical search for the mean electrostatic and monomer
density fields. Once the mean fields have been computed, the
defining relation ln Z�F��c ,�c� can be used to obtain free
energies of various types. For example, the Helmholtz free
energy A �corresponding to fixed numbers of monomers and
impurity ions� is given by

�A = n+ln c+ + n−ln c− − F��c,�c� . �11�

Following the procedure of Ref. �12�, we now move from
the continuum to a discrete three-dimensional lattice by res-
caling according to

f�r�� → �e�c�r��, �N�r�� → al
3/2�N�r��

and multiplying Eq. �7� by al
3 �al being the lattice spacing�.

This leads to the following discretized version of Eqs. �7�
and �8� on a 3D lattice:

�
m�

�n�m� fm� = �+efn� − �−e−fn� − p�n� , �12�

ap
2

6al
2�

m�
�n�m� �N,m� =

�M

al
3 �n��N,n� + pfn��N,n� − EN�N,n� ,

�13�

where

 =
�al

4��e2 , �14�

�± =
n±

�
n�

e±fn�
, �15�

and the wave functions are dimensionless and normalized
according to

�
n�

�N,n�
2 = 1; �16�

thus, the density �n� sums to the total number of monomers
M.

III. EXTRACTION OF EIGENSPECTRUM AND
EIGENFUNCTIONS FOR POLYMER

EFFECTIVE HAMILTONIAN

The simultaneous relaxation solution of Eqs. �12� and
�13� requires a rapid and efficient extraction of the eigenval-
ues and low-lying eigenvectors of the operator H, which
amounts—once the problem has been set up on a discrete
finite three-dimensional lattice—to a large sparse real sym-
metric matrix. We have found it convenient to use distinct
algorithms to extract the low-lying spectrum and eigenvec-
tors of H �typically we need on the order of 10–30 of the
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lowest states for the shortest polymer chains studied here,
while for the longest polymer chains only one to three states
suffice�. The eigenvalues are extracted using the Lanczos
technique �13�. Starting from a random initial vector w0
�v1, one generates a series of orthonormal vectors
v1 ,v2 , . . ., by the following recursion:

vn+1 = wn/�n, n → n + 1, n = �vn,Hvn�,

wn = �H − nI�vn − �n−1vn−1, �n = ��wn,wn� ,

where n ,�n are real numbers, with �0=1 and v0=0. The
matrix of H in the basis spanned by vn is tridiagonal with the
number n ��n� on the diagonal �respectively, superdiagonal
and subdiagonal�. Carrying the Lanczos recursion to order N,
diagonalization of the resulting N	N tridiagonal matrix
leads, for large N, to increasingly accurate approximants to
the exact eigenvalues of H. The presence of spurious eigen-
values �which must be removed by the sieve method of Cul-
lum and Willoughby �14�� means that typically a few hun-
dred Lanczos steps must be performed to extract the lowest
30 or 40 eigenvalues of H �for dimensions of H of order 105

as studied here� to double precision.
Once the low-lying spectrum of H has been extracted by

the Lanczos procedure, as outlined above, the corresponding
eigenvectors are best obtained by a resolvent procedure. Sup-
posing �n to be the exact nth eigenvalue of H �as obtained by
the Lanczos method�, and �n the corresponding eigenvector,
then for any random vector �ran with nonzero overlap with
�n, the vector obtained by applying the resolvent

�n,approx �
1

�n + � − H
�ran �17�

is an increasingly accurate �unnormalized� approximant to
the exact eigenvector �n as the shift � is taken to zero. A
convenient algorithm for performing the desired inverse is
the biconjugate gradient method �see routine LINBCG in Ref.
�15��. We have found the combination of Lanczos and con-
jugate gradient techniques to be a rapid and efficient ap-
proach to the extraction of the needed low-lying spectrum.

IV. SOLVING THE MEAN-FIELD EQUATIONS FOR A
POLYMER CHAIN CONFINED TO MOVE WITHIN

A SPHERICAL CAVITY EMBEDDED IN A GEL

Equations �12� and �13� are solved simultaneously using
the following relaxation procedure �12�. First, the
Schrödinger equation �13� is solved for fn� =0 and ignoring
the nonlinear �monomer repulsion� potential term. The re-
sulting �N,n�’s and corresponding energy levels EN �wave
functions and energy eigenvalues of a particle confined to the
cavity in a gel system� are used to calculate �n�, then the
Poisson-Boltzmann equation �12� is solved at each lattice
point using a simple line minimization procedure �16�. The
process is repeated and the coefficients �± are updated after a
few iterations until a predetermined accuracy is achieved.
Then the resulting fn� is used in Eq. �13�, which is solved
using the Lanczos method �13� for a new set of �N,n�’s to be
used in calculating an updated version of the monomer den-

sity �n�. This density is then inserted into Eq. �12� and a new
version of fn� is computed. For numerical stability, the up-
dated fn� inserted into Eq. �13� is obtained by adding a small
fraction of the new fn� �just obtained from Eq. �12�� to the old
one �saved from the previous iteration�. The same “slow
charging” procedure is used for updating �n� in the nonlinear
potential term of the Schrödinger equation �13�.

This numerical procedure has been applied to the system
of a polymer chain moving within a cavity embedded in a
network of random obstacles. We carve a spherical cavity of
radius 10al in the middle of a cube with a side-length of 40al
on a 403 lattice. The Kuhn length, ap=2al, and in absolute
units we take ap=5 Å. Then the random obstacles are created
by randomly selecting 20% of the remaining lattice points in
the cube outside the carved sphere to be off limits for the
polymer chain. Thus, the random obstacles take 20% of the
gel, that is, 80% of the gel volume plus the cavity volume is
available for the chain to move in. On the other hand, the
impurity ions are free to move within the whole volume of
the system. The monomer repulsion parameter � is fixed
throughout the computations through the dimensionless pa-
rameter � by the following relation:

� = 4�
�

ap
3 , �18�

with the dimensionless parameter taken to have the value �
=5.

V. NUMERICAL RESULTS AND DISCUSSION

We have computed the log of the partition coefficient K
��M1� / �M2�, where �M1� and �M2� are the number of
monomers in the spherical cavity and the remaining gel, re-
spectively, as a function of the total number of monomers in
the system, M = �M1�+ �M2�, for varying monomer charge p
and varying number of ions in the system. In Fig. 1 we show

0.0 100.0 200.0 300.0
M

3.0

4.0

5.0

6.0

ln
K

p=−0.1, n=600
p=−0.2, n=600

FIG. 1. ln K vs M for varying monomer charge p and fixed
number of negative impurity ions n=600, which corresponds to
molar concentration C�0.996M.
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the plot of ln K vs M for two different monomer charges p
=−0.1 and p=−0.2 �all in units of e�, and a fixed number of
600 negative impurity coions in the system, while the num-
ber of the positive counterions is fixed according to the con-
dition for electroneutrality.

We see that the partition coefficient K increases with M
for only the shortest polymer chains, goes through a turn-
over, and from then on decreases continuously as the number
of monomers is increased. As in our previous work �6,7�, we
observe that smaller monomer charge leads to higher parti-
tion coefficient, due to the weaker repulsion between the
monomers. In Fig. 2 we show how the partition coefficient
varies as we vary the number of negative impurity ions in the
system. As expected, the higher number of ions leads to bet-
ter screening of the monomer charges, hence less repulsion
and larger K.

Qualitatively, this behavior is similar to what we observed
in our previous work �6,7�; however, the partition coefficient
shown here decreases for almost the whole range of M, and
is, in fact, much larger than the coefficients reported earlier
�6,7� for partitioning of a polymer chain between two
spheres. This can be explained as a result of the much
smaller voids that arise between the random obstacles in the
gel outside of the spherical cavity, compared to the smaller
of the two spheres treated in Refs. �6,7�, which, in the
Schrödinger language, means that, even though the volume
available for the polymer chain outside of the spherical cav-
ity is much greater than the volume of the cavity itself, the
energy levels of the excited states that lead to a higher mono-
mer density outside of the cavity are too high �due to the
strong confinement in the narrow voids�, so that the chain is
largely confined to the cavity. Only for the cases of very
large M do we observe a non-negligible monomer density
outside of the cavity. This is illustrated in Figs. 3 and 4,
where we plot the averaged radial density of monomers start-
ing from the center of the spherical cavity for the three dif-
ferent sets of monomer charge and impurity ion concentra-
tion parameters presented here. In Fig. 3 we plot the radial
density for the case of relatively small number of monomers
M =40 and we see that virtually all of the monomers are
confined to the spherical cavity, while in Fig. 4, which rep-
resents the case of M =300, we observe a small but non-
negligible contribution to the monomer density from the re-
gion outside of the cavity.

In Figs. 5 and 6 we show the plots of the electric potential
f�r� corresponding to the parameters of Figs. 3 and 4, respec-
tively. We can qualitatively compare the results from Figs.
3–6 to our previous results in Ref. �12�, where we computed
the monomer density and the electric potential for a charged
polymer chain confined to move within a sphere. It is clear
that in both cases the shape of the monomer density distri-
bution and the electric potential are quite similar, which is an
illustration of the fact that the spherical cavity embedded in
the gel does indeed act as an “entropic trap” for the polymer
chain, and for most of the range of reasonable physical pa-

0.0 10.0 20.0 30.0
r
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0.010

0.020

0.030

ρ(
r)

M=40

p=−0.1, n=6
p=−0.1, n=600
p=−0.2, n=600

FIG. 3. The average radial density ��r� as a function of the
distance from the center of the spherical cavity r, expressed in units
of al, for the three sets of parameters considered here in the case of
M =40.

0.0 10.0 20.0 30.0
r

0.00

0.02

0.04

0.06

0.08

0.10

ρ(
r)

M=300

p=−0.1, n=6
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FIG. 4. Same as in Fig. 3, but for M =300.
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FIG. 2. ln K vs M for varying number of negative impurity ions
n and fixed monomer charge p=−0.1.
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rameters the system behaves approximately as a polymer
chain in a spherical cavity. In Figs. 5 and 6 we see that, for
the case of lower counterion numbers, the electric potential
f�r� drops to negative values at large radial distance. Never-
theless, it does approach �up to finite lattice size corrections�
zero slope, or equivalently, zero electric field, consistent with
the overall electrical neutrality of the system.

It is interesting that a new scaling regime is observed in
both curves of Fig. 2, where at around M =120 there is a
noticeable change in the slope of ln K. This change in scaling
regime is similar to the crossover between different power
laws in the dependence of osmotic pressure on monomer
concentration reported in Ref. �11�. There, the different scal-
ing law was attributed to a crossover from outer-chain con-
traction to inner-chain contraction. We think that further
studies are needed to make the connection between this phe-
nomenon and the scaling regime change observed in Fig. 2.

VI. CONCLUSIONS

We have applied a previously developed lattice field theo-
ry approach to the statistical mechanics of a charged polymer
chain in electrolyte solution �6,7,12� to the problem of a
charged polymer chain moving in a spherical cavity embed-
ded in a gel. This problem is more relevant to real experi-
mental situations involving charged polymer chains in a
complex environment than the two-sphere problem studied
by us earlier �6,7�. The results of this work demonstrate the
capability of the approach to treat more complex systems of
arbitrary shape in three dimensions, and also confirm the
expectations that a large spherical void carved out from a

network of random obstacles can act as a “trap” for polymer
chains, and therefore, may serve as a prototype for methods
of polymer separation based on macromolecular weight,
monomer charge, and/or electrolyte composition. The results
presented here confirm our previous contention �6,7,12� that
chains with smaller monomer charge would be easier to
separate by a technique exploiting the idea of “entropic trap-
ping.” Similarly, for chains with fixed monomer charge, a
better separation would be achieved in solutions with higher
impurity ion concentration—a parameter which is typically
varied in the laboratory.

It is important to note that the method used here is based
on the mean field approximation, and therefore, the results
should be considered only as qualitative. Nevertheless, one
can expect that the long range of the electrostatic interaction
and the strong confinement of the polymer chain inside the
spherical cavity would result in weakly fluctuating density
and electrostatic fields and would make the mean field ap-
proximation reliable �17�. There are, however, a number of
cases for which the mean field approximation is not reliable
�17,18�, such as the case of dilute polyelectrolyte solutions.
In these situations, field-theoretic approaches that go beyond
the mean field approximation must be used, such as the tech-
niques described in Refs. �10–12�.
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FIG. 6. Electric potential f�r� for the parameters corresponding
to Fig. 4.
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